Two‐point characteristic function for the Kepler–Coulomb problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe concentration function problem for $G$-spaces
In this note, we consider the concentration function problem for a continuous action of a locally compact group $G$ on a locally compact Hausdorff space $X$. We prove a necessary and sufficient condition for the concentration functions of a spread-out irreducible probability measure $mu$ on $G$ to converge to zero.
متن کاملHilbert’s Tenth Problem for Algebraic Function Fields of Characteristic 2
Let K be an algebraic function field of characteristic 2 with constant field CK . Let C be the algebraic closure of a finite field in K. Assume that C has an extension of degree 2. Assume that there are elements u, x of K with u transcendental over CK and x algebraic over C(u) and such that K = CK(u, x). Then Hilbert’s Tenth Problem over K is undecidable. Together with Shlapentokh’s result for ...
متن کاملHilbert’s Tenth Problem for Function Fields of Characteristic Zero
In this article we outline the methods that are used to prove undecidability of Hilbert’s Tenth Problem for function fields of characteristic zero. Following Denef we show how rank one elliptic curves can be used to prove undecidability for rational function fields over formally real fields. We also sketch the undecidability proofs for function fields of varieties over the complex numbers of di...
متن کاملCharacteristic function of a meromorphic function and its derivatives
In this paper, some results of Singh, Gopalakrishna and Kulkarni (1970s) have been extended to higher order derivatives. It has been shown that, if $sumlimits_{a}Theta(a, f)=2$ holds for a meromorphic function $f(z)$ of finite order, then for any positive integer $k,$ $T(r, f)sim T(r, f^{(k)}), rrightarrowinfty$ if $Theta(infty, f)=1$ and $T(r, f)sim (k+1)T(r, f^{(k)}), rrightarrowinfty$ if $Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 1975
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.522430